INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2019-20

Statistics - III, Semesteral Examination, November 18, 2019 Marks are shown in square brackets. Total Marks: 50

1. Let $Z_i, 1 \le i \le 4$ be independent $N(\mu, \sigma^2)$ random variables. Define $X_1 = Z_1, X_2 = Z_1 + Z_2, X_3 = Z_1 + Z_3$ and $X_4 = Z_2 + Z_4$. Let $\mathbf{X} = (X_1, \ldots, X_4)'$.

(a) Find the probability distribution of **X**.

(b) Find the partial correlation coefficients $\rho_{12.3}$ and $\rho_{12.34}$ (between elements of **X**). [10]

2. Consider the model:

 $\begin{aligned} y_1 &= \theta + \gamma + \epsilon_1 \\ y_2 &= \theta - \phi + \epsilon_2 \\ y_3 &= 2\theta - \phi + \gamma + \epsilon_3 \\ y_4 &= \phi + \gamma + \epsilon_4, \end{aligned}$

where ϵ_i are uncorrelated having mean 0 and variance σ^2 .

(a) Show that $\theta + 2\gamma + \phi$ is estimable. What is its BLUE?

(b) What is the degrees of freedom of the residual sum of squares? [14]

3. (a) Define the multiple correlation coefficient and the coefficient of determination. Explain how they are related to each other.

(b) What is a q-q plot or a normal probability plot? How is it useful in linear regression?

(c) How is Bonferroni inequality used for multiple comparisons in the oneway classification model? [12]

4. Consider the Gauss-Markov model, $\mathbf{Y} = X\beta + \epsilon$, where $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$ and $X_{n \times p}$ has rank $r \leq p$. Consider testing $H_0 : A\beta = 0$, where $A_{q \times p}$ has rank q and $A\beta$ is a collection of estimable linear functions of β . Let $\hat{\beta}$ be a least squares solution of β and $(X'X)^-$ be a generalized inverse of X'X. Let $\hat{\beta}_0$ be a least squares solution of β under the constraints given by H_0 . (a) Show that $A(X'X)^-X'X(X'X)^-A' = A(X'X)^-A'$.

(b) Find the probability distribution of $A\hat{\beta}$.

(c) Find $E((A\hat{\beta})'(A(X'X)^{-}A')^{-1}A\hat{\beta})$.

(d) Find the distribution of $(RSS_{H_0} - RSS)/RSS$ when H_0 is true. [14]